Воскресенье, 16.12.2018, 11:18
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ТЕОРИЯ ГРАФОВ

Знакомство с графами
20.01.2016, 21:06

Хорошо да коротко — вдвойне хорошо.

Народная мудрость


Живительная красота графов заключается в их простоте — они состоят лишь из точек и линий, соединяющих эти точки. Но по-настоящему удивительно то, чего можно достичь с помощью анализа этих точек и линий. В этой главе мы приглашаем вас познакомиться с теорией графов. Взглянув на граф станций метро, представленный на рисунке, вы поймете, что эти математические объекты постоянно присутствуют в нашей жизни.



Схема метро — лишь один из немногих примеров использования графов в повседневной жизни. На иллюстрации — схема парижского метро.


Из Кёнигсберга с любовью

Теория графов появилась благодаря одной занимательной задаче, которую решил Леонард Эйлер. История гласит, что в 1736 году этот блестящий математик остановился в Кёнигсберге (в настоящее время — Калининград). Город был разделен рекой на четыре части, которые были соединены семью мостами.



Старинный город Кёнигсберг на гравюре XVII вена.


На рисунке представлен упрощенный план города, на котором мосты обозначены цифрами, а районы города — буквами.



Эйлер писал об этой задаче: «Насколько я понимаю, эта задача широко известна. Она формулируется так: в прусском городе Кёнигсберге есть остров под названием Кнайпхоф, окруженный двумя рукавами реки Преголя. Через два рукава реки перекинуто семь мостов. Нужно определить, можно ли обойти все мосты, пройдя по каждому ровно один раз. Мне сообщили, что некоторые утверждают, будто это невозможно, другие сомневаются, но никто не верит, что это и в самом деле возможно».

Сам Эйлер определил, что решить задачу невозможно, приведя следующие рассуждения. Расположение районов города можно представить на схеме, где четырем точкам А, В, С и D соответствуют четыре района города, а кривым, соединяющим эти точки, — мосты:



Таким образом, исходная задача эквивалентна следующей, проиллюстрированной рисунком выше: можно ли провести маршрут так, что каждая кривая будет пройдена ровно один раз? Если бы это было возможно, то число линий для каждой точки должно было быть четным (об этом рассказывается в главе 3). Однако число линий для каждой точки на схеме является нечетным. Следовательно, задача не имеет решения.

Кёнигсбергские мосты были разрушены во время Второй мировой войны, но эта история, авторство которой приписывается Эйлеру, дала начало удивительно полезной и красивой математической теории — теории графов. Нужно учитывать, что еще до ее создания многие ученые совершенно независимо друг от друга использовали понятия, которые впоследствии были объединены в теорию графов.

В 1847 году Густав Кирхгоф использовал схемы, подобные графам, при изучении электрических цепей. В 1857 году Артур Кэли изучал число изомеров органического соединения с помощью графов, в которых точки соединялись между собой одной или четырьмя линиями — по числу химических связей. В 1869 году Мари Энмон Камиль Жордан занимался анализом абстрактных древовидных структур. В 1859 году ирландский математик Уильям Роуэн Гамильтон придумал игру (о ней мы расскажем несколько позже), цель которой — обойти вершины многогранника. Несколько лет спустя на основе этой игры были созданы гамильтоновы цепи, которые имеют очень интересное применение. В 1852 году возникла задача о раскраске карт таким образом, чтобы страны с общей границей были окрашены в разные цвета. Эта задача дала начало множеству исследований графов. Психолог Курт Левин ввел в психологию схемы, на которых люди обозначались точками, а личные отношения между ними — линиями. Физики Уленбек, Ли и Янг использовали схемы из точек и линий для изображения структур молекул и взаимодействия между ними.

* * *

ЛЕОНАРД ЭЙЛЕР (1707–1783)

Эйлер был одним из величайших математиков всех времен. Он родился в Швейцарии, большую часть жизни проработал в Берлинской и Петербургской академиях наук. Он опубликовал свыше 500 трудов, а его полное собрание сочинений насчитывает 87 томов. Особо выделяются его работы по алгебре, теории чисел, геометрии, математическому анализу, механике, астрономии и физике. Его именем названо множество теорем; формул и понятий. Любопытно, что больше половины всех своих трудов он создал после того как ослеп в 1766 году. Так как именно Эйлер нашел решение задачи о кёнигсбергских мостах, его считают пионером теории графов.



* * *

Во всех этих случаях конкретная задача изображалась в виде графической схемы, или графа, состоящего из точек и соединяющих их линий. Соответственно, в ходе решения задачи использовался анализ графа. Так как одинаковые графические схемы могут описывать совершенно различные задачи, изучение этих схем позволит найти решение для множества задач одновременно. Разумеется, при построении графа всегда остаются неучтенными какие-то условия и параметры, так как граф должен быть простым. Заметим также, что построение графа не относится к задачам метрической геометрии, то есть точки графа могут соединяться линиями произвольной формы. Главное — отобразить отношения, связи и взаимодействия, а не построить фотографически точную сеть линий и точек.

В течение XX века невероятное развитие получила и сама теория графов, и ее многочисленные применения в самых разных областях, начиная с задач планирования и заканчивая социологией, архитектурой, урбанистикой, инженерией, а особенно в информатике и телекоммуникациях. Графы связаны с комбинаторикой, дискретной математикой, топологией, теорией алгоритмов, теорией узлов и другими разделами математики. Многие математические теории способствовали развитию теории графов, а те в свою очередь позволили решить множество задач в других дисциплинах.

* * *

ПИОНЕРЫ ТЕОРИИ ГРАФОВ

Развитию теории графов в немалой степени способствовали такие выдающиеся ученые, как Уильям Томас Татт, Фрэнк Харари, Эдсгер Вибе Дейкстра и Пол Эрдёш. Теория графов приобрела большую известность благодаря их исследованиям, нестандартным задачам и написанным ими справочникам.

Британский ученый Уильям Томас Татт (1917–2002) изучал химию, но интерес к занимательным математическим задачам заставил его сменить сферу деятельности. В итоге в 1948 году он получил степень доктора математики и начал заниматься преподаванием и научной деятельностью. Во время Второй мировой войны он внес огромный вклад в расшифровку немецких кодов. Его 168 статей и несколько блестящих книг особенно обогатили теорию графов, а вместе с ней — комбинаторику и дискретную математику. Многие понятия теории графов теперь носят его имя.

Американец Фрэнк Харари (1921–2005) по праву считается основателем современной теории графов. Его 700 статей, выступления на конференциях в 87 странах, основанный им в 1977 году престижный «Журнал теории графов» и его «Теория графов», вышедшая в 1969 году, считающаяся одной из самых значимых книг по этой теме, являются доказательством тому, что он заслужил международное признание. Он применял теорию графов не только в математике и информатике, но также и в антропологии, географии, лингвистике, искусстве, музыке, физике, инженерном деле, исследовании операций и других областях.

Голландский ученый Эдсгер Вибе Дейкстра (1930–2002) заинтересовался компьютерными программами в раннем возрасте и посвятил им всю свою жизнь. Он работал в Голландии, а начиная с 1970 года — в Техасском университете в Остине. В 1972 году он был удостоен престижной премии Тьюринга за фундаментальный вклад в развитие языков программирования. Ему мы обязаны знаменитой фразой «Информатика не более наука о компьютерах, чем астрономия — наука о телескопах». Дейкстра никогда не пользовался компьютером, кроме как для отправки электронной почты и поиска информации в интернете, а все свои труды об алгоритмах и языках программирования он писал… от руки!

Пол Эрдёш (1913–1996) родился и получил образование в Будапеште. За свою жизнь он написал больше работ и сотрудничал с большим числом соавторов, чем любой другой математик XX столетия. Благодаря выдающемуся уму он добился исключительных результатов в теории графов, комбинаторике, геометрии и теории чисел. Он стал автором множества удивительных задач и гипотез, а также написал свыше 1500 статей. Эрдёш был атеистом, но (возможно, не без иронии) утверждал, что где-то в мироздании существует книга, в которой содержатся самые красивые математические доказательства. Безусловно, ученый внес неизмеримый вклад в написание этой книги.

Категория: ТЕОРИЯ ГРАФОВ | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 634 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск

Copyright MyCorp © 2018
Яндекс.Метрика Рейтинг@Mail.ru