Вторник, 26.01.2021, 08:06
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 7
Гостей: 7
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ТВОРЧЕСТВО В МАТЕМАТИКЕ

Эвристика: плавильный котел математического творчества
30.11.2015, 16:25
Способность видеть нужные взаимосвязи можно развить. Для этого необходимо перебирать различные альтернативы, пробовать и ошибаться, возвращаться назад и идти другим путем, иными словами, экспериментировать. Так мы учимся выбирать подходящие пути и отклонять неподходящие, не проходя их все до единого. Это искусство изобретать, открывать пути решения математической задачи известно под названием «эвристика».

Наибольших успехов в ней достиг венгерский математик первой половины XX века Дьёрдь Пойа. «Да, математика имеет две стороны: с одной стороны, это точная наука Евклида, с другой стороны, это еще и нечто большее, — говорил он. — Математика, представленная в стиле Евклида, кажется систематической и дедуктивной наукой, однако математика как процесс больше напоминает экспериментальную, индуктивную науку. Оба ее аспекта столь же древние, как и сама математика». Именно это «нечто большее», как вы увидите далее, очень тесно связано с творчеством в математике. В книге «Как решать задачу» Пойа приводит четыре основных этапа решения математической задачи.

1. Понять задачу.

2. Составить план решения.

3. Осуществить план решения.

4. Оглянуться на полученное решение и проанализировать его.

Пойа различает задачи на доказательство и задачи на поиск решения. Задача, рассмотренная в предыдущем разделе, относится ко второму типу. В конце этой главы мы приведем пример эвристического решения задачи первого типа.

* * *

ДЬЁРДЬ ПОЙА (1887–1985)

Этот венгерский математик разработал основные приемы решения задач. Гипотеза Пойа, сформулированная в 1919 году, гласит, что большинство натуральных чисел, меньших любого заранее заданного числа, разлагаются на нечетное количество простых множителей. Эта гипотеза была опровергнута в 1958 году, однако минимальный контрпример был найден лишь в 1980-м: это число 906150257.

* * *

Творческий характер эвристического метода подчеркивали Дэвис и Херш: «Эвристический пример доказательства и опровержения, предложенный Лакатосом… может быть применен при создании новой математики» (Дэвис и Херш, 1989, стр. 216). Чтобы применить эвристический метод подобным образом, требуется смена точки зрения и немалая доля мужества — в том числе потому, что распространенное представление о математике не согласуется с тем, что представляет из себя математика на самом деле.

Рассмотрим в качестве примера одну из фундаментальных теорем геометрии на плоскости, которая гласит, что сумма углов треугольника равна развернутому углу. Иными словами, в любом треугольнике с углами А, В и С выполняется равенство A В С = 180°, где 180° — величина развернутого угла.

Совместим ли мы вершины всех трех углов треугольника в одной точке и проверим, равна ли их сумма развернутому углу, или пойдем путем эксперимента, вырезав ножницами три угла треугольника из бумаги и расположив их требуемым образом, — все эти действия доказывают не теорему, а лишь частный случай.

Наиболее известное доказательство этой теоремы основано на том, что через одну из вершин треугольника, например С, проводится прямая r, параллельная противоположной стороне треугольника. В результате построения образуются два внешних угла треугольника при вершине С. Обозначим их X и Y.



Так как прямая параллельна стороне АВ, угол X равен углу А. Это же справедливо для углов В и Y. Однако очевидно, что три угла при вершине С образуют развернутый угол. Следовательно, 180° = X + C + Y = A + C + B, таким образом, сумма углов треугольника равна развернутому углу: А В + С = 180°.

В основе этого доказательства лежит построение дополнительной линии, которая используется в дальнейших рассуждениях. Существует много способов построить дополнительные точки и линии, но для наших целей подходит только один. На решение задачи также влияет форма и положение построенного треугольника, то есть картина, которую мы видим своими глазами.

Те, кто не догадался, что через одну из вершин треугольника можно провести прямую, параллельную противоположной его стороне, могут взглянуть на доказательство с другой точки зрения. Для этого рассмотрим построение треугольника подробнее.

Построить треугольник означает провести замкнутую линию с тремя углами. Для этого мы ставим карандаш в точку Р на листе бумаги и проводим прямую линию, например вправо. Конец проведенного отрезка Q определяется изменением направления линии, которая еще раз сменит направление в третьей вершине треугольника, R. Далее мы соединяем третью вершину треугольника с исходной точкой Р.



Используем это построение в нашем доказательстве. Треугольник образуется построением трех отрезков. Началом второго отрезка является точка Q, где линия поворачивает на угол В. В точке R мы совершаем поворот на угол С, возвращаемся в исходную точку Р и в ней совершаем поворот на угол А, после чего полученное направление прямой совпадает с исходным направлением отрезка PQ.



Значит, в сумме мы совершили три поворота на общий угол в 360°:

A В + С = 360°.

Однако каждый из этих углов является смежным к соответствующему внутреннему углу треугольника, то есть дополняет угол А, В и С соответственно до 180°.

Обозначив внутренние углы треугольника через α, β и γ, получим:

(180° — α) + (180° — β) + (180° — γ) = А + В + С = 360°.

540° — (α + β + γ) = 360°.

180° = α + β + γ.

Таким образом, сумма внутренних углов треугольника равна развернутому углу.

Это доказательство основано на способе построения исходной фигуры, для него не требуется ничего, кроме размышлений о ходе этого построения.

Эвристический метод Пойа и Лакатоса довольно точно описывает таинственный путь, который прошла математика за свою историю. Доказательство теоремы рождается в ходе рассмотрения возражений и контрпримеров, как локальных, так и глобальных, цель которых — не просто уточнить доказательство, но переформулировать условие задачи так, чтобы перейти к новым определениям и категориям. Итогом этого процесса является более точная или более общая формулировка и окончательное доказательство.



Категория: ТВОРЧЕСТВО В МАТЕМАТИКЕ | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 547 | Загрузок: 0 | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru