Среда, 21.10.2020, 15:44
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 6
Гостей: 6
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ТВОРЧЕСТВО В МАТЕМАТИКЕ

Как породить и приручить чудовище
30.11.2015, 15:50
Найти смысл и значение основных математических понятий всегда было творческой задачей. Существует множество простых уравнений, о которых говорят, что они не имеют решения, так как число, которое было бы их решением, не имеет смысла в наиболее часто используемой системе чисел.

В поле натуральных чисел, которые используются при счете, не имеет решения следующее уравнение, так как единственно возможное его решение не является натуральным числом:

2х = 1.

Однако это уравнение имеет решение в области дробных, то есть рациональных чисел:


Аналогично, очень простое уравнение

х2 = 2

не имеет решения в поле рациональных чисел. Именно с этой проблемой столкнулись древние греки. Однако им пришлось принять этот «чудовищный» результат, поскольку он являлся решением одной из простейших геометрических задач — задачи о нахождении диагонали квадрата единичной стороны.

Решение этого уравнения и этой задачи расширяет поле чисел так называемыми вещественными числами:


Можно подумать, что некоторые уравнения не имеют решений просто потому, что не существует чисел, которые описывали бы их решения, и, следовательно, решение имеет всякое уравнение. Суть проблемы в том, принадлежит решение этого уравнения к известным на данный момент числам или нет. Приведем еще один пример: мы говорим, что уравнение

х2 = —1

не имеет решения. Однако оно не имеет решения потому, что мы считаем х вещественным числом — конечной или бесконечной дробью, периодической либо нет.

Однако существует значение х, которое является решением этого уравнения, и выглядит оно «чудовищно»:


В середине XVI века Джероламо Кардано нашел формулу решения кубических уравнений, но, применив ее к уравнению х3 — 15х — 4 = 0, он столкнулся с проблемой. Нетрудно показать, что решением этого уравнения является х = 4. Однако решение, найденное по формуле Кардано, выглядело совершенно иначе:


Перед нами — еще одно «чудовище». Какой смысл имеет квадратный корень из отрицательного числа? Как соотносится подобное число с известным нам решением х = 4? Если мы примем квадратные корни из отрицательных чисел как числа, то какое значение они будут иметь?

Лишь в начале XIX века корни из отрицательных чисел получили свое значение: они стали составной частью комплексных чисел и им были поставлены в соответствие точки в декартовых координатах. Множество комплексных чисел, обозначаемое символом С, расширяет поле вещественных чисел. Комплексное число — это число, состоящее из двух частей: вещественной и мнимой. Мнимая часть представляет собой произведение вещественного числа на i — корень из минус единицы, также называемый мнимой единицей. Рассмотрим два комплексных числа, а и Ь:

i = √-1

= 2 + 3i

b = 1/2 — i√5.

Чтобы представить число а = 2 + 3в декартовой системе координат, нужно отложить две единицы вдоль оси абсцисс и три единицы — вдоль оси ординат. Полученная точка будет иметь координаты (2, 3). Однако мы изобразили не просто точку на координатной плоскости — в отличие от точек и векторов на плоскости, с комплексными числами можно выполнять все известные алгебраические операции: сложение, вычитание, умножение, возведение в степень и т. д., и эти вычисления аналогичны вычислениям с вещественными числами. Наконец, система комплексных чисел является полной, так как любое уравнение на поле комплексных чисел имеет решение на этом же поле, что не выполняется для других множеств.

После того как было описано представление комплексных чисел на плоскости, они стали играть определяющую роль при решении задач, не имеющих решения в поле вещественных чисел.

Категория: ТВОРЧЕСТВО В МАТЕМАТИКЕ | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 418 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru