Четверг, 22.10.2020, 06:31
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 3
Гостей: 3
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ТВОРЧЕСТВО В МАТЕМАТИКЕ

Симбиоз алгебры и геометрии
30.11.2015, 15:48
Изложенное в предыдущем разделе стало возможным благодаря великому математическому творению — симбиозу алгебры и геометрии, которым стала аналитическая геометрия, разработанная Декартом и Ферма. Некоторые математики античности пытались создать систему геометрического представления формул. Однако лишь усилиями Декарта алгебра и геометрия объединились навсегда.

Предметом алгебры являются формулы и уравнения, предметом геометрии — фигуры и пространство. В аналитической геометрии эти два мира сливаются воедино: для каждой фигуры существует описывающая ее формула, для каждой формулы — множество точек плоскости, удовлетворяющих ей. Так уравнения обретают геометрический смысл, что облегчает их наглядное представление.

Такой подход позволяет нанести решения уравнений на «математическую карту» — систему координат. Но при поиске доказательств аналитическая геометрия не всегда полезна, так как иногда чисто геометрическое доказательство формулируется красивее, короче и четче, чем аналитическое.

Уравнение 3х — у + 1 = 0 — это элемент алгебры, смысл которого состоит в вычислении двух чисел, х и у, удовлетворяющих этому равенству. Этому уравнению удовлетворяют различные пары чисел: х = 0, у = 1; х = 1, у = 4; х = —1; у = —2.

Аналитическая геометрия придает этим числам новый смысл благодаря количественному измерению пространства. Если речь идет о двумерной плоскости, на ней проводятся две прямые, соответствующие двум измерениям на плоскости, на которых откладываются вещественные числа. Из соображений удобства эти линии обычно перпендикулярны друг другу, хотя это необязательно. Далее значениям переменной х сопоставляются числа на одной оси, значениям переменной у — числа на другой оси. Обозначим на плоскости точки А, В и С, соответствующие трем парам вышеуказанных решений уравнения:



Добавим к ним другие пары решений, удовлетворяющих уравнению:



Достаточно зафиксировать значение одной переменной, чтобы увидеть, что для каждого ее значения существует значение второй переменной, которое будет удовлетворять уравнению. Бесконечное число возможных значений одной переменной подразумевает бесконечное число значений второй переменной. В итоге алгебраическому уравнению Зх — у + 1 = 0 будет соответствовать прямая на плоскости:



Как следствие, решение системы из двух уравнений с двумя неизвестными становится геометрической задачей на нахождение точки пересечения двух прямых:




Категория: ТВОРЧЕСТВО В МАТЕМАТИКЕ | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 502 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru