Четверг, 29.10.2020, 19:26
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 10
Гостей: 10
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ТВОРЧЕСТВО В МАТЕМАТИКЕ

Теорема, рождающая чудовищ
30.11.2015, 15:52
Пифагор, известнейший из математиков, создал самую знаменитую математическую теорему. Ее доказательства, предлагаемые в средней школе, совершенно не похожи на вариант, предложенный Евклидом. Он также основан на вычислении площадей, в нем, как и в формулировке самой теоремы, фигурируют площади квадратов, построенных на сторонах прямоугольного треугольника. Однако площади используются только для доказательства. Сама же теорема используется только для вычисления длины.

Как правило, обычно доказывается прямая теорема Пифагора:

если a, b, с — катеты и гипотенуза прямоугольного треугольника соответственно, то а2 + Ь2 = с2.

Обратное утверждение практически никогда не доказывается:

если а2 + Ь2 = с2, то а, Ь, с являются катетами и гипотенузой прямоугольного треугольника соответственно.

Это утверждение имеет огромное практическое значение, так как позволяет строить поверхности, которые будут располагаться друг к другу под прямым углом, например стены здания. Этот же метод использовали египтяне, которым было известно, что треугольник со сторонами 3, 4 и 5 м — прямоугольный. Это соотношение сторон прямоугольного треугольника было известно в самых разных частях света и в разные эпохи, однако используемые значения порой существенно отличались — например, применялись треугольники со сторонами 60 см, 80 см и 1 м.

Задолго до Пифагора, в Древнем Египте и Месопотамии, были известны тройки целых чисел (позднее их стали называть пифагоровыми), в которых квадрат одного числа равнялся сумме квадратов двух других.

Объяснить закономерность, описывающую эти числа, математики того времени не могли. Но можно обнаружить интересные соотношения между числами, например 52 + 122 = 132: если не знать, в чем их причина и каковы их следствия, то подобные соотношения будут всего лишь интересными фактами. Строгое доказательство теоремы Пифагора вызвало первый крупный кризис в математике.

Девизом пифагорейской школы было «все есть число». Пифагорейцы наделяли числа мистическими свойствами и считали, что любые соотношения между вещами описываются соотношениями натуральных чисел. Если применить теорему Пифагора к диагонали квадрата, получим удивительный результат:



Пифагорейцы считали, что длина D (квадратный корень из 2) должна быть соизмерима со стороной квадрата, то есть быть дробным числом. Если бы мы разделили сторону квадрата на достаточно большое число частей, например на миллион, то длина диагонали должна была равняться целому числу частей. Можно ли представить ее как 1414213? Нет, так как квадратный корень из двух нельзя представить в виде частного двух натуральных чисел, и это помешало найти меру, которой можно было бы вычислить и сторону квадрата, и его диагональ.

Теорема породила чудовище, невозможное с общепринятой точки зрения.

Оказалось, что не все соотношения можно свести к отношению двух целых. Нечто столь простое, как диагональ квадрата, оказалось несоизмеримым с его стороной.

Так появились несоизмеримые величины. В то время математики не обладали достаточными знаниями, чтобы доказать, что длина окружности также несоизмерима с ее диаметром, то есть что число π несоизмеримо с дробными числами.

Рассмотрим, почему квадратный корень из 2 нельзя представить как частное двух натуральных чисел. Всякое натуральное число n можно представить в виде произведения простых множителей. Пример:

12 = 22·3;

315 = 32·3·7.

Заметим, что при возведении числа в квадрат все простые множители в его разложении будут встречаться четное число раз:

122 = (22·3)2 = 24·32;

3152 = (З2·5 ·7)2 = З4·52·72.

Если частное двух натуральных чисел m и равно квадратному корню из двух, то


Теперь разложение на простые множители для m2 и для m2 содержит четное число простых множителей. По этой причине, вне зависимости от того, присутствует ли 2 в разложении n2 на множители, 2 будет фигурировать в разложении 2n2 нечетное число раз. Если разложение n2 на множители не содержит 2, то разложение 2n2 будет содержать одну двойку; если же в разложении n2 содержится несколько двоек, их число будет четным, следовательно, в разложении 2n2 двойка встретится нечетное число раз. Поэтому m2 и n не могут быть равны, так как в разложении одного из этих чисел 2 встретится четное число раз, а в разложении другого — нечетное число раз. Следовательно, √2 не может быть частным двух натуральных чисел, и диагональ квадрата и его сторона несоизмеримы.

* * *

ТРАНСЦЕНДЕНТНЫЕ ЧИСЛА

Многочлен — это выражение, в котором присутствует переменная, возведенная в различные степени с натуральным показателем. Числа, на которые умножается переменная в этих степенях, называются коэффициентами. Например, следующий многочлен

Р(х) = х5 — 4х3 + 3х2/2 -6

имеет рациональные коэффициенты, а именно 1, -4, 3/2 и -6. Число а называется корнем многочлена, если при этом значении переменной многочлен обращается в ноль: Р(а) = 0. Число а = 2 является корнем вышеприведенного многочлена. Число называется трансцендентным, если не существует многочлена с рациональными коэффициентами, корнем которого оно бы являлось. Иными словами, нельзя записать уравнение со степенями с натуральным показателем, решением которого будет трансцендентное число. Иррациональность числа √2 была доказана еще в Древней Греции. Об иррациональности числа я математики подозревали давно, однако доказательство этому было найдено лишь в 1761 году благодаря усилиям Иоганна Ламберта. В 1882 году Линдеман доказал, что я является трансцендентным числом. Как следствие, была окончательно доказана невозможность решения задачи о квадратуре круга. Число е (е = 2,71828182845904…) названо так по первой букве фамилии одного из величайших математиков всех времен — Леонарда Эйлера (1707–1783). Так же как и π, е является иррациональным и трансцендентным.

* * *

Натуральные числа столь близки нам, что многие считали их божественным творением. Можно сказать, что нечто столь совершенное не имеет изъянов и что любая теорема о натуральных числах в итоге обязательно должна быть либо доказана, либо опровергнута. Любое утверждение в системе натуральных чисел обязательно является либо истинным, либо ложным.

Однако математик Курт Гёдель (1906–1978) доказал, что это не так, что существуют недоказуемые теоремы о натуральных числах, то есть о них нельзя сказать, истинны они или ложны. Согласно так называемой теореме Геделя о неполноте натуральные числа также содержат парадоксы.

* * *

ПАРАДОКСЫ

Парадокс — это рассуждение, приводящее к взаимно исключающим заключениям. Рекурсия в языке порой становится причиной парадоксов, в частности, как в двух первых случаях из числа представленных ниже. Третий случай является удивительным примером математической задачи с тремя разными решениями.

1. Некий брадобрей бреет только тех, кто не бреется сам. Кто должен брить самого брадобрея?

2. Слово «гетерологичный» означает «неприменимый к самому себе». Является ли само слово «гетерологичный» гетерологичным словом?

3. Парадокс Бертрана. В окружности случайным образом проводится хорда. Какова вероятность того, что ее длина будет превышать длину стороны равностороннего треугольника, вписанного в эту же окружность? Эту вероятность можно рассчитать тремя разными способами и получить три разных результата: 1/2, 1/3 и 1/4.


Категория: ТВОРЧЕСТВО В МАТЕМАТИКЕ | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 483 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru