Понедельник, 25.01.2021, 09:36
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 8
Гостей: 8
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ

Озарение
08.12.2015, 12:17
Осенью того же года Уайлс, отчаявшийся, подавленный, исчерпавший силы до предела, поднял белый флаг. Он был не в силах восстановить доказательство. Исключительно из профессиональной гордости он вернулся на три года назад и стал проверять метод Колывагина — Флаха с самого начала, чтобы по меньшей мере определить, почему столь многообещающее направление в итоге привело его в тупик. Уайлс сел за тот же самый стол, который был свидетелем его славы, а затем — череды неудач.

Утро понедельника, 19 сентября, Уайлс навсегда запомнил в мельчайших подробностях:

«Я пытался найти ошибку, как вдруг внезапно, совершенно неожиданно на меня снизошло озарение. Я понял, что хотя метод Колывагина — Флаха не работал на полную мощность, в нем было все, что необходимо для возможности применения теории Ивасавы, на которую я первоначально опирался. Это был самый… самый важный момент за всю мою математическую карьеру. Решение было неописуемо прекрасно, просто и элегантно».

Двадцать минут Уайлс с недоверием смотрел на исписанные листы, и его глаза наполнялись слезами.

«Остаток дня я ходил по кафедре. Потом я вернулся в кабинет, чтобы убедиться, что я не ошибся. И я действительно не ошибся. Мне стало ясно, что от метода Колывагина — Флаха я могу взять все необходимое для того, чтобы сделать эффективным мой первоначальный подход трехлетней давности. Так из руин и пепла метода Колывагина — Флаха возникло правильное решение задачи. Прошла ночь, и я снова начал проверять решение. В 11 утра я убедился, что все в порядке. Я вернулся домой и сказал жене: "Я нашел его. Думаю, что мне удалось найти его". И это было так неожиданно… Думаю, она решила, будто я говорю о детской игрушке, и спросила: "Что ты нашел?" И я ответил: "Я исправил доказательство. Мне это удалось"».

Нада отмечала день рождения 3 октября, и супруг преподнес ей удивительный подарок, пусть и на несколько дней раньше. Следующие несколько дней Тейлор и Уайлс подробно проверяли новое, исправленное доказательство, и не нашли ни единой ошибки. Меньше месяца спустя были опубликованы две рукописи. Авторство одной из них, достаточно объемной, с названием «Модулярные эллиптические кривые и великая теорема Ферма», принадлежало Эндрю Уайлсу. Другая, более короткая, называлась «Теоретико-кольцевые свойства некоторых алгебр Гекке» и принадлежала перу Уайлса и Ричарда Тейлора. В первой содержалось доказательство гипотезы Таниямы — Симуры для полустабильных эллиптических кривых. Один из важнейших этапов доказательства был основан на материале второй рукописи. Обе рукописи были подробно прокомментированы и представлены к публикации в научном журнале «Анналы математики». Эксперты не обнаружили ошибок, и рукописи были опубликованы в майском номере журнала за 1995 год.

Категория: ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ | Добавил: admin | Теги: Мир Математики, ИТК и мате, искусственный интеллект, популярная математик, машинное обучение, математика и информатик, дидактический материал по матем
Просмотров: 422 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru