Воскресенье, 25.10.2020, 11:28
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 7
Гостей: 7
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ

Перевод таблички Плимптон 322 в десятичную систему счисления
08.12.2015, 13:31
Исследователи шли тем же путем, когда пытались разгадать значение чисел на табличке Плимптон 322. Сначала они пронумеровали столбцы и тщательно перевели все цифры в арабскую нотацию.


Таблица чисел с исходной таблички в системе по основанию 60, записанных в арабской нотации.


Для всех табличек в этой главе курсивом (в левом верхнем углу) выделены трудночитаемые числа, жирным шрифтом — предположительно ошибочные значения. Ниже приведены эти же числа, переведенные в десятичную систему по методу, описанному выше.



Числа с таблички, переведенные в десятичную систему.


По-видимому, эти числа не имеют особого смысла. Это может быть просто набор цифр. Заметим, однако, что в четвертом столбце, то есть в первом столбце справа, содержатся последовательные числа от 1 до 15, как будто бы что-то было пронумеровано. С другой стороны, можно сказать, что в первом столбце содержится последовательность шестидесятеричных чисел от 0 до 1, строго упорядоченных по убыванию. Некоторые из них более сложные и содержат больше цифр, например, число в десятой строке. Другие намного проще, как, например, число в 11-й строке. Но все же кажется невероятным, что между этими числами существует какая-то связь.

И здесь нужно обратить внимание на второй и третий столбцы, так как числа в третьем столбце всегда больше чисел из второго, и при делении мы также получим строго упорядоченную по убыванию последовательность чисел между 0 и 1. Таким образом, мы можем добавить в таблицу столбец V. Значения в нем будут рассчитываться по следующей формуле:

столбец V = столбец II столбец III.

Кроме того, можно легко показать, что если возвести каждое число во втором и третьем столбце в квадрат и вычесть одно из другого, то результат всегда будет квадратом целого числа. Таким образом, мы можем добавить в таблицу столбец VI. Значения в нем будут рассчитываться по следующей формуле:

столбец VI = √(столбец III2столбец II2).

Объединив все полученные числа в одну таблицу, мы сможем исправить некоторые ошибки в исходных числах. Например, все указывает на то, что во второй строке есть ошибка, так как число в столбце V не вписывается в убывающую последовательность чисел, а в столбце VI не получается целое число. Единственный способ исправить эти ошибки — записать в третьем столбце 4825 вместо 11 521.

Теперь числа согласуются между собой.




Расширенная таблица с исправленными ошибками (исправленные значения отмечены звездочками).


Но еще удивительнее значения чисел в первом столбце. Потребовалось немало воображения, чтобы догадаться, что при делении чисел из второго столбца на числа из шестого и возведении результата в квадрат получаются числа из первого столбца с точностью до последнего десятичного знака. Поразительно! Теперь мы можем исправить все ошибки в исходных числах.

Но откуда взялись все эти числа? Очевидно, что они записаны на табличке не случайно. В течение десятилетий исследователи предлагали различные объяснения. В первом приближении может показаться, что здесь перечислены пифагоровы тройки (в столбцах II, III и VI), то есть целые числа, удовлетворяющие соотношению из теоремы Пифагора. Числа в столбце II соответствуют длинам меньших катетов, числа в столбце III — длинам гипотенуз, числа в столбце VI — длинам больших катетов. Это подтверждает и надпись на аккадском языке над столбцами II и III. Возможно, столбец VI был записан на утерянной части таблички.

Но кому понадобилось выбрать столь сложные пифагоровы тройки? Существует множество значительно более простых троек, например, (3, 4, 5), (6, 8, 10) или (3, 12, 13). Все они соответствуют сторонам прямоугольных треугольников, но не приводятся в таблице. Хотя эта табличка могла быть не единственной, было бы логично предположить, что среди первых пятнадцати строк появятся некоторые из простейших пифагоровых троек.


Гипотеза Отто Нойгебауэра

Все это заставило математика Отто Нойгебауэра предположить, что числа в столбцах II и III на самом деле являются результатами вычислений над более простыми числами. Примерно в 1931 году Нойгебауэр предположил, что создателю таблички были известны формулы для определения пифагоровых троек на основе этих чисел. Для этого он выбрал два натуральных взаимно простых числа р и q, p > q. Затем он рассчитал следующие значения:

а = р2q2 (столбец II),

b = 2pq (столбец VI),

с = р2 + q2 (столбец III).

Нетрудно видеть, что

а2 + Ь2 = (р2q2)2 + (2pq)2 = р4 — 2p2q2 + q4 + 4р2q2р4 + 2p2q2 + р4 = (р2 + q2)2 = с2.

Следовательно, эти три числа образуют пифагорову тройку.

Руководствуясь этой гипотезой, Нойгебауэр начал дополнять табличку новыми столбцами, которые предположительно находились в левой, утерянной ее части.



Выбор значений p и q согласно гипотезе Отто Нойгебауэра (исправленные значения отмечены звездочками).


Казалось бы, все сходится. Кроме одиннадцатой строчки! Почему все числа в таблице не могут подчиняться общей закономерности? Почему закономерность нарушена именно в этой строке? Потому что она обладает крайне любопытным свойством. Числа, образующие пифагорову тройку (45, 60, 75) имеют общие делители: все они делятся на 15. Выполнив деление, получим тройку (3, 4, 5), которой соответствуют значения р = 2, q = 1.

Но это не помогло найти разгадку. Множество вопросов оставалось без ответа. Почему были выбраны именно эти значения р и q, а не какие-то другие? И что означают числа из первого столбца?


Объяснение Роберта Крейтона Бака

Математик Роберт Крейтон Бак в 1980 году объяснил значения чисел на основе тригонометрии. Для этого он изобразил все прямоугольные треугольники, описанные в табличке: за длины меньших катетов он принял числа из столбца II, за длины больших катетов — числа из предполагаемого столбца VI, за длины гипотенуз — числа из столбца III. Затем он вычислил угол между большим катетом и гипотенузой и заметил удивительный факт: в первом треугольнике длина катетов была почти одинаковой, поэтому угол между большим катетом и гипотенузой был чуть меньше 45°. Затем углы строго уменьшались с каждым шагом приблизительно на один градус.



В столбцах II, III и VI записаны длины сторон прямоугольных треугольников, в столбце I — результат вышеприведенной операции.



Величины углов в пятнадцати прямоугольных треугольниках, длины сторон которых записаны в столбцах II, III и VI.


С учетом всего этого Бак осмелился предположить, что в столбце I находятся квадраты тангенсов полученных углов. Следовательно, табличка Плимптон 322 доказывает, что тригонометрические функции были известны уже тогда. Однако эту гипотезу сложно подтвердить, так как нам неизвестны другие документы той эпохи, где для решения задач использовались бы тригонометрические функции. Часто совсем непросто определить уровень знаний разных культур на основе известных нам источников! Одни исследователи всегда будут склонны к преувеличению, другие — к преуменьшению.

Однако существование табличек — неоспоримый факт. Все значения р и q разлагаются на произведения простых делителей: 2, 3 и 5. Следовательно, значения, обратные р и q, при записи в шестидесятеричной системе счисления всегда будут иметь конечное число знаков. Может, по этой причине составитель таблички выбрал именно эти р и q, а не какие-то другие?


Интерпретация Элеанор Робсон

В феврале 2002 года Элеанор Робсон из Великобритании удивила научное сообщество, представив новую интерпретацию таблички. Быть может, вовсе не столь очевидно, что на табличке Плимптон 322 записаны пифагоровы тройки. Согласно Элеанор Робсон, автором таблички мог быть учитель математики, который использовал ее как справочник при решении определенных уравнений второй степени. Свою гипотезу она подкрепила содержанием другой таблички, YBC 6967, созданной примерно в то же время.

В ней подробно описывается способ решения уравнений вида х — 1/x = с. Он состоит в подсчете последовательности промежуточных значений, которые помогают найти решение:

a1с/2, а2 = а12,а3 = 1 + а24 = а31/2.

Зная эти числа, мы легко вычислим

x = а4 a1,1/x = a4 — a1

Согласно Робсон, в табличке Плимптон 322 использовалась та же схема: а3 записаны в первом столбце, a1 = (х — 1/х)/2 во втором, а4 = (х + 1/х)/2 — в третьем. По этой гипотезе значения х и 1/х могли находиться на утерянной части таблички.

Таким образом, на табличке было записано 15 упражнений, которые учитель давал ученикам. Табличка содержала все промежуточные значения, чтобы не нужно было каждый раз повторять вычисления. Это настоящий учебник, очень похожий на современные.


Теорема Пифагора в Шумерии

Однако исследования Робсон возвращают нас к исходному вопросу. Если табличка Плимптон 322 не является убедительным доказательством того, что теорема Пифагора была известна уже шумерам, то когда же эта теорема впервые упоминается в исторических источниках? В любом случае нужно подождать, пока не будут найдены новые таблички, которые помогут частично ответить на вопросы. Но также достоверно известно, что теорема Пифагора в том или ином виде упоминалась в обширной истории Месопотамии, и этому существуют документальные подтверждения.

К вавилонскому периоду относится задача, которая не оставляет относительно этого никаких сомнений. В задаче говорится: «Стебель тростника имеет длину 0,30. Сверху опущено 0,06, каково расстояние до низа?» В десятичной системе длина тростника равна 0,5, а расстояние от верха стены до конца стебля равно 0,1. Изобразим условие задачи на рисунке. Заметим, что стебель тростника, стена и пол образуют прямоугольный треугольник. Стебель длиной 0,5 — это гипотенуза АС, стена АВ и пол ВС — два катета.



Прямоугольный треугольник из шумерской задачи о тростнике.


Далее в этом же документе приводится решение. Арабскими цифрами оно записывается так:

Возведи в квадрат 0,5, получишь 0,25.

Вычти 0,1 из 0,5, получишь 0,4.

Возведи в квадрат 0,4, получишь 0,16.

Вычти 0,16 из 0,25, получишь 0,09.

Квадрат какого числа равен 0,09?

0,3.

Нижний конец стебля отстоит от стены на 0,3.


Если говорить вкратце, то для нахождения катета длина гипотенузы и длина катета возводятся в квадрат, после чего находится квадратный корень из разности этих квадратов. Именно так формулируется теорема Пифагора.

Нет никаких сомнений, что автору был известен метод решения этой задачи в общем виде, вне зависимости от длины стебля и расстояния, на которое он отстоит от стены. Кроме этого, автор верно подобрал числа, чтобы задачу было легко решить в шестидесятеричной системе счисления, так как все числа в задаче можно представить как произведение 2, 3 и 5 в различных степенях.

И чтобы окончательно развеять сомнения, добавим, что в источниках вавилонского периода многократно встречается задача о вычислении квадратного корня. Документально подтверждено, что вавилоняне умели вычислять квадратный корень из 2 с удивительной точностью.

Все это доказывает, что в культуре Месопотамии было известно, сколь важную роль играло вычисление квадратных корней в решении задач. Помимо прочего, им также было известно, что некоторые квадратные корни имеют точные значения, а другие имеют бесконечное множество знаков, и их значение можно вычислить только приближенно. Вавилонские математики терпеливо вычисляли значения этих корней со все большей точностью.

Существование письменных источников показывает, как важно передать полученные знания потомкам, чтобы новые поколения мудрецов смогли уточнить, пересмотреть и дополнить полученные ранее результаты. Подобно тому как астрономы оставляли свидетельства о своих наблюдениях, математики увековечивали свои открытия. Но сделать это было непросто. Для этого требовался богатый язык, объединявший числа, формы, рассуждения, вычисления и так далее, чтобы передавать знания из поколения в поколение.



Категория: ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ | Добавил: admin | Теги: Мир Математики, ИТК и мате, искусственный интеллект, популярная математик, машинное обучение, математика и информатик, дидактический материал по матем
Просмотров: 732 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru