Суббота, 21.12.2024, 16:40
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КОНСПЕКТЫ УРОКОВ МАТЕМАТИКИ [183]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО МАТЕМАТИКЕ [81]
ЗАДАЧИ НА ВЫРОСТ [141]
НЕСТАНДАРТНЫЕ УРОКИ МАТЕМАТИКИ [26]
ДИДАКТИЧЕСКИЕ ИГРЫ НА УРОКЕ МАТЕМАТИКИ [37]
ИНФОРМАТИКА В ИГРАХ И ЗАДАЧАХ ДЛЯ ПЯТИКЛАССНИКОВ [120]
УЧЕБНЫЕ ПРОГРАММЫ ДЛЯ УЧИТЕЛЯ МАТЕМАТИКИ [5]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [28]
КОНСПЕКТЫ УРОКОВ ИНФОРМАТИКИ [81]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ [25]
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ [10]
МУЛЬТИМЕДИА И ВИРТУАЛЬНЫЕ МИРЫ [20]
ПРЕЗЕНТАЦИИ ПО МАТЕМАТИКЕ [24]
ТЕОРИЯ ЧИСЕЛ [36]
СФЕРЛАНДИЯ [32]
ДИДАКТИЧЕСКИЙ МАТЕРИАЛ ПО ИНФОРМАТИКЕ [10]
В МИРЕ ЗАДАЧ [182]
УВЛЕКАТЕЛЬНАЯ ЭКСКУРСИЯ В МИР МАТЕМАТИКИ [30]
МАТЕМАТИКА В 10 КЛАССЕ [34]
ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ЕГЭ [155]
МЕТОДИЧЕСКИЕ НАРАБОТКИ [82]
ПРЕПОДАЕМ АЛГЕБРУ И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА [143]
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ К УРОКАМ [27]
МИР МАТЕМАТИКИ [778]
ОНЛАЙН-УЧЕБНИК ИНФОРМАТИКИ. 6 КЛАСС [36]
ПОДГОТОВКА К ГИА [11]
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ ПО АЛГЕБРЕ. 10 КЛАСС [45]
ПРЕЗЕНТАЦИИ ПО ИНФОРМАТИКЕ [26]
МАТЕМАТИКА В 5 КЛАССЕ [43]
МАТЕМАТИКА. 7 КЛАСС [69]
АЛГЕБРА. 8 КЛАСС [25]
МАТЕМАТИКА. 9 КЛАСС [9]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/АЛГЕБРА [29]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/ГЕОМЕТРИЯ [12]
ОЛИМПИАДЫ ПО МАТЕМАТИКЕ [55]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ИНФОРМАТИКИ [90]
МАТЕМАТИЧЕСКИЕ ЧУДЕСА И ТАЙНЫ [70]
МАТЕМАТИКА 8 КЛАСС [9]
МАТЕМАТИКА. 6 КЛАСС [78]
ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ [12]
ЕГЭ ПО МАТЕМАТИКЕ [0]
ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ [47]
ГЕОМЕТРИЯ [0]
ГЕОМЕТРИЯ. 8 КЛАСС [36]
ТЕСТЫ ПО ИНФОРМАТИКЕ [31]
ЗАДАЧНИКИ ПО ИНФОРМАТИКЕ [26]
ЗАДАНИЯ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ [29]
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ [7]
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ [82]
Главная » Файлы » ТЕОРИЯ ЧИСЕЛ

Алгоритм Евклида
07.12.2013, 12:10

Вновь вернемся к нашим дробям а/b. Если а > b, то дробь является числом, большим 1, и мы часто разделяем ее на целую часть и правильную дробь, меньшую единицы.

Примеры. Мы пишем

32/5 = 6 + 2/5 = 6 2/5, 63/7 = 9 + 0/7 = 9.

В общем случае мы используем деление с остатком

чисел а и b (a ≥ b), а именно:

a = qb + r, где 0 ≤ r b—1. (4.3.1)

Рис. 14.

Очевидно, что это всегда возможно. Действительно, рассмотрим числа 0, 1, 2… на числовой прямой (рис. 14). Где-то на этой прямой расположено число а. Начиная от точки 0 станем отмечать точки b, 2b, Зb и т. д. до точки qb такой, что qb не больше, чем а, в то время как (q + 1)b уже больше а. Расстояние от точки qb до точки а и есть r. Мы называем число r остатком при делении (4.3.1), a q — частным. Это частное q встречается столь часто, что имеется специальный символ для его обозначения:

q = [a/b].

Этот символ обозначает наибольшее целое число, не превосходящее числа а/b. Для примеров, приведенных выше, получим

[32/5] = 6, [63/7] = 9.

В предыдущем разделе мы исследовали наибольший общий делитель двух натуральных чисел а и b:

d0 = D(a, b). (4.3.2)

Чтобы найти число d0, мы полагали, что мы знаем разложения чисел а и b на простые множители. Однако нахождение таких разложений может оказаться очень трудным занятием для больших чисел. Существует совсем другой метод для нахождения наибольшего общего делителя, который не использует подобных разложений. Он основан на следующем:

Если a = qb + r, где 0 ≤ r ≤ b—1, то

D(a, b) = d = D(r, b). (4.3.3)

Доказательство. Запишем

d0 = D(a, b), d1 = D(r, b).

Таким образом, доказательство соотношения (4.3.3) означает доказательство того, что d0d1. Любой общий делитель чисел а и b также делит число

r = а — qb.

Следовательно, число r делится на d0.

Так как число d0 является делителем как числа r, так и числа b, то оно должно делить и число d1 = D(b, r); отсюда d1d0. С другой стороны, в соответствии с соотношением (4.3.1) любой общий делитель чисел r и b делит число а, откуда число d1 делит число а. Так как число d1 делит также и число b, то оно должно делить и число d0 = D(a, b), следовательно, d0d1. Из сказанного следует, что d0 = d1.

Пример. 1066 = 5 • 200 + 66; следовательно, (1066, 200) = (66, 200).

Этот результат, сформулированный в утверждении (4.3.3), дает нам простой метод вычисления наибольшего общего делителя двух чисел. Вместо поисков наибольшего общего делителя чисел а и b достаточно найти наибольший общий делитель чисел r и b. Эта задача более проста, так как число r меньше, чем каждое из чисел а и b. Чтобы найти наибольший общий делитель чисел r и b, мы вновь воспользуемся тем же методом и разделим число b на r:

b = q1r + r1,

где r1 меньше каждого из чисел b и r. В соответствии с правилом (4.3.3) мы получаем

d0 = D(a, b) = D(b, r) = D(r, r1).

Далее, таким же способом обращаемся с числами r и г1 и т. д. В результате получаем последовательность пар чисел, каждая из которых имеет один и тот же наибольший общий делитель:

d0 = D(a, b) = D(b, r) = D(r, r1) = D(r1, r2) =… (4.3.4)

Так как остатки постоянно уменьшаются, то эта последовательность должна закончиться после получения остатка rk+1 = 0. Это происходит при делении

rk-1 = qk+1rk + 0,

т. е. число rk делит число rk-1. Тогда

D(rk-1, rk) = rk,

и из (4.3.4) видим, что

d0 = D(а, b) = rk.

Другими словами, число d0 равно первому из остатков, который делит предшествующий ему остаток.

Пример. Найдем наибольший общий делитель чисел 1970 и 1066. Когда мы разделим одно число на другое и продолжим этот процесс дальше, как было выше рассказано, то найдем

1970 = 1 • 1066 + 904,

1066 = 1 • 904 + 162,

904 = 5 • 162 + 94,

162 = 1 • 94 + 68,

94 = 1 • 68 + 26,

68 = 2 •  26 + 16,

26 = 1 • 16+ 10,

16 = 1 • 10 + 6,

10 = 1 • 6 + 4,

6 = 1 • 4 + 2,

4 = 2 • 2 + 0.

Следовательно, (1970, 1066) = 2.

Этот метод нахождения наибольшего общего делителя двух чисел называется алгоритмом Евклида, так как первое его описание содержится в «Началах» Евклида. Этот метод очень удобен для применения в вычислительных машинах.


Система задач 4.3.

1. Решите задачу 1 § 1 (с. 49), используя алгоритм Евклида.

2. Найдите наибольший общий делитель для каждой из пяти первых пар дружественных чисел. Сравните результаты с результатами, полученными с помощью разложения на простые множители.

3. Каким количеством нулей заканчивается число

n! = 1 • 2 • 3 •… • n?

Сверьте свой результат с таблицей факториалов.

Категория: ТЕОРИЯ ЧИСЕЛ | Добавил: admin | Теги: урок, занимательные задачи для школьников, математика в школе, мир чисел, дидактический материал по математик, нестандартные задачи по математике
Просмотров: 1558 | Загрузок: 0 | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru