Пятница, 26.04.2024, 02:22
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КОНСПЕКТЫ УРОКОВ МАТЕМАТИКИ [183]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО МАТЕМАТИКЕ [81]
ЗАДАЧИ НА ВЫРОСТ [141]
НЕСТАНДАРТНЫЕ УРОКИ МАТЕМАТИКИ [26]
ДИДАКТИЧЕСКИЕ ИГРЫ НА УРОКЕ МАТЕМАТИКИ [37]
ИНФОРМАТИКА В ИГРАХ И ЗАДАЧАХ ДЛЯ ПЯТИКЛАССНИКОВ [120]
УЧЕБНЫЕ ПРОГРАММЫ ДЛЯ УЧИТЕЛЯ МАТЕМАТИКИ [5]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [28]
КОНСПЕКТЫ УРОКОВ ИНФОРМАТИКИ [81]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ [25]
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ [10]
МУЛЬТИМЕДИА И ВИРТУАЛЬНЫЕ МИРЫ [20]
ПРЕЗЕНТАЦИИ ПО МАТЕМАТИКЕ [24]
ТЕОРИЯ ЧИСЕЛ [36]
СФЕРЛАНДИЯ [32]
ДИДАКТИЧЕСКИЙ МАТЕРИАЛ ПО ИНФОРМАТИКЕ [10]
В МИРЕ ЗАДАЧ [182]
УВЛЕКАТЕЛЬНАЯ ЭКСКУРСИЯ В МИР МАТЕМАТИКИ [30]
МАТЕМАТИКА В 10 КЛАССЕ [34]
ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ЕГЭ [155]
МЕТОДИЧЕСКИЕ НАРАБОТКИ [82]
ПРЕПОДАЕМ АЛГЕБРУ И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА [143]
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ К УРОКАМ [27]
МИР МАТЕМАТИКИ [778]
ОНЛАЙН-УЧЕБНИК ИНФОРМАТИКИ. 6 КЛАСС [36]
ПОДГОТОВКА К ГИА [11]
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ ПО АЛГЕБРЕ. 10 КЛАСС [45]
ПРЕЗЕНТАЦИИ ПО ИНФОРМАТИКЕ [26]
МАТЕМАТИКА В 5 КЛАССЕ [43]
МАТЕМАТИКА. 7 КЛАСС [69]
АЛГЕБРА. 8 КЛАСС [25]
МАТЕМАТИКА. 9 КЛАСС [9]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/АЛГЕБРА [29]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/ГЕОМЕТРИЯ [12]
ОЛИМПИАДЫ ПО МАТЕМАТИКЕ [55]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ИНФОРМАТИКИ [90]
МАТЕМАТИЧЕСКИЕ ЧУДЕСА И ТАЙНЫ [70]
МАТЕМАТИКА 8 КЛАСС [9]
МАТЕМАТИКА. 6 КЛАСС [78]
ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ [12]
ЕГЭ ПО МАТЕМАТИКЕ [0]
ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ [47]
ГЕОМЕТРИЯ [0]
ГЕОМЕТРИЯ. 8 КЛАСС [36]
ТЕСТЫ ПО ИНФОРМАТИКЕ [31]
ЗАДАЧНИКИ ПО ИНФОРМАТИКЕ [26]
ЗАДАНИЯ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ [29]
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ [7]
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ [82]
Главная » Файлы » ТЕОРИЯ ЧИСЕЛ

Магические квадраты
07.12.2013, 12:31

Если вы играли в «шафлборд», вы можете вспомнить, что девять квадратов, на которых вы размещаете свои фишки, занумерованы числами от 1 до 9, расположенными так, как на рис. 7. Здесь числа в каждом столбце и в каждой строчке, а также в каждой из диагоналей, дают при сложении одно и то же число 15.

Рис. 7.


В общем случае магическим квадратом является расположение чисел от 1 до n2 в виде квадрата так, что числа в каждом столбце, строчке и диагонали дают одинаковую сумму s, называемую магической суммой.

Пример магического квадрата с 42 = 16 числами изображен на рис. 8. Магическая сумма для него равна 34.

Рис. 8.


Для каждого числа n существует только одна магическая сумма s, которую легко найти. Так как сумма чисел в каждом столбце равна s, а столбцов — n, то сумма всех чисел в магическом квадрате равна ns.

Но сумма всех чисел от 1 до n2 равна

1 + 2 +… + n2 = ½ (n2 + 1) n2,

что следует из формулы для суммы n членов арифметической прогрессии. Так как

n  s = ½ (n2 + 1) n2,

то

s = ½ n (n2 + 1). (1.5.1)

Таким образом, если число n задано, то число s определено. Магические квадраты могут быть построены для любого числа n, которое больше 2; читатель легко может убедиться, что их не существует для n = 2.

Во времена средневековья странные свойства этих квадратов считались волшебными и поэтому магические квадраты служили талисманами, защищающими тех, кто их носил, от многих несчастий. Часто воспроизводится магический квадрат, присутствующий на знаменитой гравюре Альбрехта Дюрера «Меланхолия» (она помещена на фронтисписе нашей книги). Этот квадрат воспроизведен с большим увеличением на рис. 9; при этом мы получили также возможность увидеть, как во времена Дюрера изображались цифры. Средние числа в последней строке изображают год, — 1514, в котором, как мы знаем, была создана эта гравюра. Возможно, что Дюрер, положив в основу именно эти числа, нашел остальные методом проб и ошибок. Можно доказать, что при n = 3 имеется лишь один магический квадрат, а именно квадрат, изображенный на рис. 7. Докажем этот факт. Для этого напишем числовой квадрат 3 × 3 в общем виде

x1  y1  z1

xy2  z2

xyz3

и выясним, какими могут быть эти девять чисел.

Рис. 9.

Вначале покажем, что центральное число y2 должно равняться 5. Из формулы (1.5.1) следует, что при n = 3 магическая сумма s равна 15. Просуммируем теперь числа во второй строке, втором столбце и обеих диагоналях. В эту сумму каждое число, кроме числа y2, входит по одному разу; число у2 входит четыре раза, так как оно содержится в каждой из четырех сумм. Поэтому, так как каждая сумма равна s, то

4s = 4 × 15 = 60 =

= x2 + y2 + z2 + y1 + y2 + y3 + x1 + у2 + z3 + z1 + y2 + x3 = Зy2 + x1 + x2 + x3 + y1 + y2 + y3 + z1 + z2 + z3 =

= 3y2 + 1 + 2 +… + 9 = 3y2 + 45.

Следовательно,

Зy2 = 60–45 = 15 и y2 = 5.

В таблице

x1  yz1

x2   z2

xy3  z3

число 9 не может стоять в углу, так как, если, например, x1 = 9, то z3 = 1 (потому что s = 15), т. е. мы получили бы таблицу

9  y1  z1

xz2

xy3  1

Каждое из четырех чисел y1, z1, x2, х3 должно быть меньше шести, так как y1 + z1 = х2 + х3 = 6. Но у нас осталось лишь три числа, меньших шести, а именно: 2, 3 и 4. Таким образом, получилось противоречие. Отсюда мы делаем вывод, что число 9 должно находиться в середине строки или столбца, поэтому наш квадрат может быть записан так:

x9  z1

xz2

xz3

Число 7 не может быть в одной и той же строке с числом 9, так как тогда сумма чисел в этой строке была бы больше пятнадцати; точно так же число 7 не может быть в одной и той же строке с числом 1, так как тогда оставшееся в этой строке число должно было бы быть также семеркой. Таким образом, 7 не может находиться в углу, и мы можем считать, что наш квадрат имеет следующий вид:

x9  z1

7   5  z2

x3  z3

Числа, находящиеся в одной строке с числом 9 — это 2 и 4, так как иначе сумма в этой строке была бы больше пятнадцати. Далее, число 2 должно быть в том же столбце, что и число 7, так как если бы там стояло 4, то третье число в этом столбце было бы тоже 4. Используя это наблюдение, мы можем определить место каждого из двух оставшихся чисел 6 и 8, в результате получаем магический квадрат, изображенный на рис. 7.

Для больших значений n можно построить великое множество магических квадратов. В XVI и XVII веках, и даже позже, составление магических квадратов столь же процветало, как и составление кроссвордов в наши дни. Бенджамин Франклин был страстным любителем магических квадратов. Он позже признавался, что, будучи служащим Законодательного Собрания штата Пенсильвания, он скрашивал скучные часы на службе составлением причудливых магических квадратов и даже магических кругов, в которых числа «стоят на переплетающихся окружностях, причем сумма чисел на каждой из окружностей одна и та же. Следующий эпизод взят нами из Собрания сочинений Бенджамина Франклина.

О магических квадратах Б. Франклина стало известно, когда один из его старых друзей, Логан, показал ему несколько книг о магических квадратах, заметив при этом, что не верит в то, что кто-либо из англичан мог бы сделать что-либо замечательное в этой области.

«Логан показал мне в одной из этих книг несколько необычных и довольно любопытных случаев, но ни один из них не мог сравниться с теми, которые, как я помню, были сделаны мною. Он попросил меня показать их. И в следующее свое посещение я принес ему квадрат 8 × 8, который я нашел среди своих старых бумаг и который я предлагаю вам с описанием его свойств» (рис. 10).

Рис. 10.

Б. Франклин упоминает только некоторые свойства своего квадрата. Мы предлагаем читателю найти и другие его свойства. Например, очевидно, что s равняется 260, а сумма чисел в каждой половине любой строки и в каждой половине любого столбца равняется 130, что составляет половину от 260. Четыре числа, стоящие в углах, в сумме с четырьмя числами, стоящими в центре квадрата, дают 260; сумма чисел по наклонному ряду, идущему от числа 16 вправо-вверх до числа 10, а далее по наклонному ряду, идущему, от числа 23 вправо-вниз до числа 17 равна 260. То же самое верно для каждого ряда из восьми чисел, параллельного описанному выше.

«Потом Логан показал мне старую книгу по арифметике, изданную в формате кварто и написанную, я думаю, неким Штифелем (Михаил Штифель, «Arithmetica integra», Нюренберг, 1544). В этой книге был помещен квадрат 16 × 16, в который, по его мнению, был вложен колоссальный труд. Но если я не ошибаюсь, он имел лишь обычное свойство, т. е. обладал постоянной суммой, равной 2056 в каждом ряду: горизонтальном, вертикальном и диагональном.

Не желая уступить Штифелю даже в размерах квадрата, я, вернувшись домой, в тот же вечер составил квадрат 16 × 16, который помимо всех свойств моего квадрата 8 × 8, т. е. наличия постоянной суммы 2056 во всех аналогичных рядах и диагоналях, имел еще одно дополнительное свойство. Если вырезать из листа бумаги квадрат 4 × 4 и уложить этот лист на большой квадрат так, чтобы 16 квадратиков большего квадрата попали в эту прорезь, то сумма 16 чисел, появившихся в этой прорези, куда бы мы ее ни положили, на большом квадрате будет одна и та же, и равна тому же самому числу 2056».


Магический квадрат Б. Франклина перед вами (рис. 11) и вы можете сами проверить его замечательные свойства.

Рис. 11.

Б. Франклин по праву гордился своим творением, что видно из продолжения его письма: «На следующее утро я послал этот квадрат нашему другу, который через несколько дней вернул его в ответном письме со следующими словами: „Я возвращаю тебе твой удивительный, а может быть, самый изумительный магический квадрат, в котором…", но этот комплимент слишком экстравагантен, и поэтому ради него, а также ради самого себя, мне не следует его повторять. К тому же это и необязательно, так как я не сомневаюсь, что вы охотно согласитесь, что этот квадрат 16 × 16 является самым магически-магическим из всех магических квадратов, составленных когда-либо каким-либо магом». Более подробные сведения о построении магических квадратов можно найти в книгах: Е. Я. Гуревич. Тайна древнего талисмана. — М.: Наука, 1969 и И. М. Постников. Магические квадраты. — М.: Наука, 1964.


Система задач 1.5.

1. Мог ли Дюрер использовать вместо своего квадрата, изображенного на рис. 9, какие-либо другие квадраты, в которых тот же год фигурировал таким же образом?

2. Дюрер прожил до 1528 г. Смог ли бы он датировать какую-нибудь из своих более поздних картин таким же способом?

Рис. 12. Репродукция магического круга Франклина. Оригинал, выполненный в цвете, был продан частному коллекционеру на аукционе в Нью-Йорке.


3. Изучите некоторые свойства магического круга Б. Франклина (рис. 12).

Категория: ТЕОРИЯ ЧИСЕЛ | Добавил: admin | Теги: урок, занимательные задачи для школьников, математика в школе, мир чисел, дидактический материал по математик, нестандартные задачи по математике
Просмотров: 3202 | Загрузок: 0 | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru