Суббота, 21.12.2024, 16:51
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КОНСПЕКТЫ УРОКОВ МАТЕМАТИКИ [183]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО МАТЕМАТИКЕ [81]
ЗАДАЧИ НА ВЫРОСТ [141]
НЕСТАНДАРТНЫЕ УРОКИ МАТЕМАТИКИ [26]
ДИДАКТИЧЕСКИЕ ИГРЫ НА УРОКЕ МАТЕМАТИКИ [37]
ИНФОРМАТИКА В ИГРАХ И ЗАДАЧАХ ДЛЯ ПЯТИКЛАССНИКОВ [120]
УЧЕБНЫЕ ПРОГРАММЫ ДЛЯ УЧИТЕЛЯ МАТЕМАТИКИ [5]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [28]
КОНСПЕКТЫ УРОКОВ ИНФОРМАТИКИ [81]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ [25]
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ [10]
МУЛЬТИМЕДИА И ВИРТУАЛЬНЫЕ МИРЫ [20]
ПРЕЗЕНТАЦИИ ПО МАТЕМАТИКЕ [24]
ТЕОРИЯ ЧИСЕЛ [36]
СФЕРЛАНДИЯ [32]
ДИДАКТИЧЕСКИЙ МАТЕРИАЛ ПО ИНФОРМАТИКЕ [10]
В МИРЕ ЗАДАЧ [182]
УВЛЕКАТЕЛЬНАЯ ЭКСКУРСИЯ В МИР МАТЕМАТИКИ [30]
МАТЕМАТИКА В 10 КЛАССЕ [34]
ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ЕГЭ [155]
МЕТОДИЧЕСКИЕ НАРАБОТКИ [82]
ПРЕПОДАЕМ АЛГЕБРУ И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА [143]
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ К УРОКАМ [27]
МИР МАТЕМАТИКИ [778]
ОНЛАЙН-УЧЕБНИК ИНФОРМАТИКИ. 6 КЛАСС [36]
ПОДГОТОВКА К ГИА [11]
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ ПО АЛГЕБРЕ. 10 КЛАСС [45]
ПРЕЗЕНТАЦИИ ПО ИНФОРМАТИКЕ [26]
МАТЕМАТИКА В 5 КЛАССЕ [43]
МАТЕМАТИКА. 7 КЛАСС [69]
АЛГЕБРА. 8 КЛАСС [25]
МАТЕМАТИКА. 9 КЛАСС [9]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/АЛГЕБРА [29]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/ГЕОМЕТРИЯ [12]
ОЛИМПИАДЫ ПО МАТЕМАТИКЕ [55]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ИНФОРМАТИКИ [90]
МАТЕМАТИЧЕСКИЕ ЧУДЕСА И ТАЙНЫ [70]
МАТЕМАТИКА 8 КЛАСС [9]
МАТЕМАТИКА. 6 КЛАСС [78]
ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ [12]
ЕГЭ ПО МАТЕМАТИКЕ [0]
ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ [47]
ГЕОМЕТРИЯ [0]
ГЕОМЕТРИЯ. 8 КЛАСС [36]
ТЕСТЫ ПО ИНФОРМАТИКЕ [31]
ЗАДАЧНИКИ ПО ИНФОРМАТИКЕ [26]
ЗАДАНИЯ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ [29]
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ [7]
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ [82]
Главная » Файлы » ТЕОРИЯ ЧИСЕЛ

Некоторые задачи, связанные с системами счисления
07.12.2013, 11:58

Обсудим несколько задач, связанных с системами счисления, которые имеют отношение к выбору оснований систем счисления, удобных для машинного счета. Предположим, что мы имеем дело с обычным настольным арифмометром, который работает при помощи сцепленных числовых колес, каждое из которых имеет 10 цифр: 0, 1, … 9. Если имеется n колес, то мы можем представить все числа вплоть до

N = 99…9 (n раз), (6.4.1)

как и в (6.3.1).

Предположим теперь, что в качестве основания мы взяли число b, отличное от 10, но продолжаем рассматривать числа до N. Тогда мы должны иметь m колес, где m — целое число, удовлетворяющее условиям (6.3.2) и (6.3.3). Как и в (6.3.4). число m является целым числом, равным числу n/lg b или следующим за ним. Так как каждое колесо несет b цифр, то количество цифр, записанных на колесах, приближенно равно

D = n  b/lg b.

Можно теперь спросить: какое нужно выбрать число b, чтобы получить наименьшее количество чисел, записанных на колесах? Чтобы найти наименьшее значение числа D, в формуле (6.4.2) необходимо лишь исследовать функцию

f(b) = b/lg b (6.4.3)

для различных оснований b = 2, 3, 4… С помощью таблицы логарифмов получаем значения

 b    2    3    4    5    6

f(b) 6,64 6,29 6,64 7,15 7,71

Последующие значения для f(b) еще больше; например, f(10) = 10, как уже отмечалось. Мы заключаем, что для таких арифмометров имеет место следующее утверждение.

Наименьшее общее число цифр на арифмометре достигается при b = 3.

Видно, что для b = 2 и b = 4 общее число цифр не на много больше; в этом смысле маленькие основания имеют преимущество.

Рассмотрим небольшое изменение этой задачи. Обычные счеты того типа, который иногда используется для обучения детей счету, имеют несколько металлических спиц с девятью подвижными косточками на каждой из них, чтобы отмечать цифры чисел. С таким же успехом можно провести параллельные прямые на листе бумаги и отмечать цифры соответствующим количеством спичек, или же подобно древним начертить эти прямые на песке и отмечать цифры камешками.

Но вернемся к счетам. Если имеется n спиц и на каждой по 9 косточек, то можно представить вновь все целые числа с п знаками вплоть до числа N, записанного в (6.4.1). Теперь зададим следующий вопрос: можно ли, взяв другое основание b, сделать счеты более компактными, т. е. обойтись меньшим количеством косточек?

При основании b количество косточек на каждой спице будет b — 1. Как и прежде, для того чтобы счеты имели ту же вместимость N, количество знаков или спиц должно определяться соотношением (6.3.4). Это дает значение

E = n/lg b  (b — 1) (6.4.4)

в качестве приближения для общего количества косточек. Чтобы найти, когда это число принимает наименьшее возможное значение, мы должны исследовать функцию

g(b) = (b — 1)/lg b (6.4.5)

для различных значений числа b = 2, 3… Значение функции g(b) для небольших значений числа b даны в таблице

  b   2    3    4    5    6

g(b) 3,32 4,19 4,98 5,72 6,43

Для больших значений числа b функция продолжает возрастать, поэтому мы заключаем, что необходимое количество косточек на счетах будет минимально при b = 2.

Можно интерпретировать этот результат с другой точки зрения. Предположим, что мы отметили цифры нашего числа, используя спички или камешки, расположенные на прямых линиях. В десятичной системе будет от 0 до 9 отметок на каждой прямой. Это дает в среднем по 4,5 спички на каждой прямой для наугад взятых чисел; следовательно, числа с n знаками потребуют в среднем 4,5 n спичек, когда они укладываются произвольно.

Посмотрим, какое время потребуется, чтобы уложить эти спички на места. Имея в виду какое-нибудь расположение, предположим, что потребуется одна секунда, чтобы уложить одну спичку. Тогда общее время, требуемое для того, чтобы уложить все спички, будет в среднем составлять приблизительно 4,5 n секунд.

Предположим, что мы изменили наше основание на число b и допустим ту же самую вместимость для представления чисел. В таком случае на каждой прямой будет от 0 до b — 1 спичек, следовательно, в среднем 1/2 (b — 1) из всего количества спичек. Как мы упоминали несколько раз, мы будем иметь приблизительно n/lg b прямых. Отсюда делаем вывод, что среднее время, требуемое для представления числа с n знаками, составляет примерно

n/lg n  1/2 • (b — 1) = 1/2 E

секунд, здесь Е есть выражение из (6.4.4). Так как это время было минимальным для b = 2, мы также можем сделать вывод:

среднее время, необходимое для установления числа с помощью спичек на прямых, минимально для b = 2.


Система задач 6.4.

1. Постройте графики функций y = f(b) из (6.4.3) и у = g(b) из (6.4.5) для b > 1. Если вы уже знакомы с дифференциальным исчислением, используйте его для определения формы кривых.

Категория: ТЕОРИЯ ЧИСЕЛ | Добавил: admin | Теги: урок, занимательные задачи для школьников, математика в школе, мир чисел, дидактический материал по математик, нестандартные задачи по математике
Просмотров: 1042 | Загрузок: 0 | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 2
    Гостей: 2
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru