Суббота, 21.12.2024, 17:04
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КОНСПЕКТЫ УРОКОВ МАТЕМАТИКИ [183]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО МАТЕМАТИКЕ [81]
ЗАДАЧИ НА ВЫРОСТ [141]
НЕСТАНДАРТНЫЕ УРОКИ МАТЕМАТИКИ [26]
ДИДАКТИЧЕСКИЕ ИГРЫ НА УРОКЕ МАТЕМАТИКИ [37]
ИНФОРМАТИКА В ИГРАХ И ЗАДАЧАХ ДЛЯ ПЯТИКЛАССНИКОВ [120]
УЧЕБНЫЕ ПРОГРАММЫ ДЛЯ УЧИТЕЛЯ МАТЕМАТИКИ [5]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [28]
КОНСПЕКТЫ УРОКОВ ИНФОРМАТИКИ [81]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ [25]
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ [10]
МУЛЬТИМЕДИА И ВИРТУАЛЬНЫЕ МИРЫ [20]
ПРЕЗЕНТАЦИИ ПО МАТЕМАТИКЕ [24]
ТЕОРИЯ ЧИСЕЛ [36]
СФЕРЛАНДИЯ [32]
ДИДАКТИЧЕСКИЙ МАТЕРИАЛ ПО ИНФОРМАТИКЕ [10]
В МИРЕ ЗАДАЧ [182]
УВЛЕКАТЕЛЬНАЯ ЭКСКУРСИЯ В МИР МАТЕМАТИКИ [30]
МАТЕМАТИКА В 10 КЛАССЕ [34]
ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ЕГЭ [155]
МЕТОДИЧЕСКИЕ НАРАБОТКИ [82]
ПРЕПОДАЕМ АЛГЕБРУ И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА [143]
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ К УРОКАМ [27]
МИР МАТЕМАТИКИ [778]
ОНЛАЙН-УЧЕБНИК ИНФОРМАТИКИ. 6 КЛАСС [36]
ПОДГОТОВКА К ГИА [11]
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ ПО АЛГЕБРЕ. 10 КЛАСС [45]
ПРЕЗЕНТАЦИИ ПО ИНФОРМАТИКЕ [26]
МАТЕМАТИКА В 5 КЛАССЕ [43]
МАТЕМАТИКА. 7 КЛАСС [69]
АЛГЕБРА. 8 КЛАСС [25]
МАТЕМАТИКА. 9 КЛАСС [9]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/АЛГЕБРА [29]
МАТЕМАТИЧЕСКИЕ ДИКТАНТЫ/ГЕОМЕТРИЯ [12]
ОЛИМПИАДЫ ПО МАТЕМАТИКЕ [55]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ИНФОРМАТИКИ [90]
МАТЕМАТИЧЕСКИЕ ЧУДЕСА И ТАЙНЫ [70]
МАТЕМАТИКА 8 КЛАСС [9]
МАТЕМАТИКА. 6 КЛАСС [78]
ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ [12]
ЕГЭ ПО МАТЕМАТИКЕ [0]
ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ [47]
ГЕОМЕТРИЯ [0]
ГЕОМЕТРИЯ. 8 КЛАСС [36]
ТЕСТЫ ПО ИНФОРМАТИКЕ [31]
ЗАДАЧНИКИ ПО ИНФОРМАТИКЕ [26]
ЗАДАНИЯ ПОВЫШЕННОГО УРОВНЯ СЛОЖНОСТИ [29]
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ [7]
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ [82]
Главная » Файлы » ТЕОРИЯ ЧИСЕЛ

Простые и составные числа
07.12.2013, 12:27

Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,

6 = 2 • 3, 9 = 3 • 3, 30 = 2 • 15 = 3 • 10,

в то время как другие, например,

3, 7, 13, 37,

не могут быть разложены на множители подобным образом. Давайте вспомним, что вообще, когда число

c = a b (2.1.1)

является произведением двух чисел a и b, то мы называем а и b множителями или делителями числа с. Каждое число имеет тривиальное разложение на множители

с = 1 • с = с • 1. (2.1.2)

Соответственно мы называем числа 1 и с тривиальными делителями числа с.

Любое число с > 1, у которого существует нетривиальное разложение на множители, называется составным. Если число с имеет только тривиальное разложение на множители (2.1.2), то оно называется простым. Среди первых 100 чисел простыми являются следующие 25 чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Все остальные числа, кроме 1, являются составными. Мы можем сформулировать следующее утверждение:

Теорема 2.1.1. Любое целое число с> 1 является, либо простым, либо имеет простой множитель.

Доказательство. Если с не является простым, числом, то у него есть наименьший нетривиальный множитель р. Тогда р — простое число, так как если бы р — было составным, то число с имело бы ещё меньший множитель.

Теперь мы подошли к нашей первой важной задаче в теории чисел: как определить, является ли произвольное число простым или нет, и в случае, если оно составное, то как найти какой-либо его нетривиальный делитель?

Первое, что может прийти в голову, — это попытаться разделить данное число с на все числа, меньшие его. Но надо признать, что этот способ мало удовлетворителен. Согласно теореме 2.1.1 достаточно делить на все простые числа, меньшие √с. Но мы можем значительно упростить задачу, заметив, что при разложении на множители (2.1.1) оба множителя а и b не могут быть больше, чем c, так как в противном случае мы получили бы

ab > √с • с,

что невозможно. Таким образом, чтобы узнать, имеет ли число с делитель, достаточно проверить, делится ли число с на простые числа, не превосходящие — √с.

Пример 1. Если с = 91, то √с = 9….; проверив простые числа 2, 3, 5, 7, находим, что 91 =7 13.

Пример 2. Если с =1973, то находим, что √с = 44…. Так как ни одно из простых чисел до 43 не делит с, то это число является простым.

Очевидно, что для больших чисел этот метод может быть очень трудоемким. Однако здесь, как и при многих других вычислениях в теории чисел, можно использовать современные методы. Довольно просто запрограммировать на ЭВМ деление данного числа с на все целые числа до √с и печатание тех из них, которые не имеют остатка, т. е. тех, которые делят с.

Другим очень простым методом является применение таблиц простых чисел, т. е. использование простых чисел уже найденных другими. За последние 200 лет было составлено и издано много таблиц простых чисел. Наиболее обширной из них является таблица Д. X. Лемера, содержащая все простые числа до 10 000 000. Наша таблица 1 содержит все простые числа до 1000.

Таблица 1

Простые числа среди первой тысячи чисел

Некоторые энтузиасты-вычислители уже подготовили таблицы простых чисел, превосходящих 10 000 000. Но, по-видимому, не имеет большого смысла идти на значительные затраты и усилия, чтобы опубликовать эти таблицы. Лишь в очень редких случаях математику, даже специалисту в теории чисел, приходится решать вопрос о том, является ли какое-то большое число простым. Кроме того, большие числа, о которых математик хочет узнать, являются они составными или простыми, не берутся им произвольно. Числа, которые он хочет исследовать, обычно появляются в специальных математических задачах, и, таким образом, эти числа имеют очень специфическую форму.


Система задач 2.1.

1. Какие из следующих чисел являются простыми: а) год вашего рождения; б) текущий год; в) номер вашего дома.

2. Найдите простое число, следующее за простым числом 1973.

3. Заметим, что числа от 90 до 96 включительно являются семью последовательными составными числами; найдите девять последовательных составных чисел.

Категория: ТЕОРИЯ ЧИСЕЛ | Добавил: admin | Теги: урок, занимательные задачи для школьников, математика в школе, мир чисел, дидактический материал по математик, нестандартные задачи по математике
Просмотров: 2391 | Загрузок: 0 | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 2
    Гостей: 2
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru